727. Vibrational Frequency Correlations in Heterocyclic Molecules. Part VII.¹ Benzo-1,2,3-triazoles.

By D. G. O'SULLIVAN.

Infrared spectra are described for a series of substituted benzo- and and 1-phenylbenzo-1,2,3-triazoles. They indicate that, in the solid state, benzotriazole possesses the cyclic diazoimino-structure and is associated by means of hydrogen bonds. Bands related to the ring systems agree with the pattern generally produced by a benzene ring fused to a five-membered ring. Between 1650 and 950 cm.⁻¹ little variation occurs even between benzotriazoles and their 1-phenyl derivatives, but at lower frequencies marked differences exist. Apart from those introduced by modification of the ring system, as in 1-phenylbenzotriazoles, 1-2'-quinolylbenzotriazole, and 2,3-naphthotriazole, variations depend mainly on substitution pattern.

In 5-substituted benzotriazoles a band between 896 and 811 cm.⁻¹ probably arises from out-of-plane vibrations of the isolated 4-hydrogen atom, and another between 888 and 803 cm.⁻¹ from vibrations of the adjacent 6,7hydrogen atoms. These frequencies maintain a constant separation of 11 cm.⁻¹ and both are linearly dependent on the Hammett *meta* σ value for the substituent.

As many benzo-1,2,3-triazoles, particularly the nitro-compounds, have low solubilities in relevant solvents, infrared spectra were determined in the solid state in potassium bromide discs or windows. Since much criticism has been levelled at this method,² every determination was duplicated and, where solubilities permitted, records were obtained over suitable wavelength ranges with chloroform as solvent. In all cases good reproducibility was obtained.

Experimental.—Spectra were measured on a Perkin–Elmer 21 recording spectrophotometer fitted with a sodium chloride prism.

- ¹ Part VI, O'Sullivan, J., 1960, 3278.
- ² Farmer, Spectrochim. Acta, 1956, **8**, 374. **6** B

Specifically Characterised Frequencies.-Benzo-1,2,3-triazole can exist in tautomeric forms (I) and (II). Derivatives of both forms can be produced indirectly and chemical

evidence favours structure (I). Molecular refraction³ and Raman spectra⁴ failed to decide between the possibilities, but the ultraviolet spectra 5 of the compound and of its 1- and 2-methyl derivative support structure (I). The following evidence arises from the infrared spectra: (i) For benzo-1,2,3-triazoles no band is present between 1680 and 1630 $cm.^{-1}$ that can definitely be referred to C=N linkages.⁶ (ii) A band is present at, or slightly below, 1600 cm.⁻¹ (Table 1) that could arise from N=N vibrations; ⁷ this is also present in 1-acetyl-5-methoxybenzotriazole and in the 1-phenyl compounds (Table 1), which necessarily possess N=N bonds. (iii) Considerable similarity between the spectra of unsubstituted benzotriazoles and those substituted at position 1, particularly in the region which contains the nuclear vibrations (Table 2), suggests that the ring systems are identical in both types of structure. Consequently, the infrared data, whilst not unequivocal, also favour structure (I). The lack of chemical reactivity of benzotriazoles indicates resonance stabilisation, and structures (III) and (IV) probably make a minor contribution to the resonance hybrid. Infrared spectra do not permit decisions to be reached on the structure of benzotriazoles with substituents in positions 4 and 5.

Except for 5-bromobenzotriazole and 1-(2,4-diaminophenyl)- and 1-[2,4-di(acetamido)phenyl]-benzotriazole no compound possesses a maximum above 3400 cm.⁻¹ (Table 1), showing that, generally, the NH groups are involved in hydrogen bonding. This varies between very weak bonding with 2,3-naphthotriazole to fairly strong bonding with 5-methyland 5-bromo-benzotriazole. The broad band between 3200 and 3100 cm.⁻¹ in most benzotriazoles shows that the hydrogen bonds are usually of moderate strength. This suggests that the possible resonance-stabilised association, involving structures of type (III), does not make a large contribution to the hydrogen-bonded polymer, and that, in most cases, ordinary $N-H \cdots N$ bonding is present. Stretching frequencies of the CH bonds appear as weak bands near 3000 cm.⁻¹ in most benzotriazoles substituted in position 1 but, being weak, they are usually obscured in the NH absorption of other compounds (Table 1).

The carbonyl stretching frequency of 1-acetyl-5-methoxybenzotriazole (Table 1) is high if compared with the N-acetyl carbonyl frequencies of N-acetylindoxyl⁸ (1673 cm.⁻¹) and diacetylindoxyl⁸ (1700 cm.⁻¹) and with the carbonyl frequencies of aromatic ketones.⁹ This suggests that little conjugation exists with the ring system. The separation of the carbonyl frequencies in 1-[2,4-di(acetamido)phenyl]benzotriazole is surprising as the molecular environment of the two groups is similar. The frequency difference is too wide for only one carbonyl group to be involved in hydrogen bonding. Both carbonyl peaks are very sharp and the position of the NH stretching frequencies (Table 1) also shows the absence of any very strong hydrogen bonds. Either the benzotriazole ring exerts a very marked steric effect on the o-acetamido-group or coupling occurs between the vibrations of the two carbonyl groups in this compound.

Most of the compounds possessing an NH group give a band between 1580 and 1526

- Goulden, J., 1953, 997. Le Fèvre, O'Dwyer, and Werner, Chem. and Ind., 1953, 378. 7

Auwers, Ber., 1938, 71, 604.

Kohlrausch and Seka, Ber., 1938, 71, 1563.

Specker and Gawrosch, Ber., 1942, 75, 1338.

 ⁸ Holt, Kellie, O'Sullivan, and Sadler, J., 1958, 1217.
 ⁹ Thompson and Torkington, J., 1945, 640; Hartwell, Richards, and Thompson, J., 1948, 1436; Grove and Willis, J., 1951, 877; Rasmussen, Tunnicliff, and Brattain, J. Amer. Chem. Soc., 1949, 71, 1068.

13			6	6	io or	6	~	8 651			. ~	20	8 650 3 640	\$ 640	8	¢	~	1 651
12			65!	665	0 662 3 662	8 665	599	662		1.665	399 () 66£	2 66 65t	67%	5 665	1 66	658	664
11					710 696	698				200	069	2 69C	5 702 3	8	705	687		•
10										17	3 73]	732	8 726 0 718	218	6	0		9 726
6		Ŧ				0		4		-	1 743	~	3 748 1 746	0	5 73(1 74(~	8 73:
80		6 74	1 75:	0	50	7 74	1 74			75,0	4 75	2 745	8 75 8 75	3 75(1 75	3 75	9 75(5 753
7		2 75	76	92 6	22.00	5 2 74'	75.	-		1 76(202	3 76:	3 768 1 768	2 77:	9 77	1 76	9 76	277.5
9		77		808	08 08 08	6 203	30 30 30	5		10	5 80: 9	80	2 78. 2 78.	161	80%	508 - 08	786	792
õ				æ		8 85	88 88 88 88 84 88 84 84 84 84 84 84 84 8	j noo			83		9 8 5 5	4	1	20 83 83	0	
4		80	1 80:	5 815	828	388	2 871	818		10	- 		0 85	5 83 8	8 82.	2 851	9 84(1	3 82
e		87.	0 81	83 83 0 19 0	8 52 8 65 8 65	89	88	80		5 5	è è è		88° 91(843	868	86:	87. 86.	873
01		0	2 87	1 83 86	48	5		20 20 20 20 20		azole	4	% C	, 10 0 V	ħ		6	60	ۍ دی
1	les	90	94	95	93	94		95	Α.	120tV1 02	0	93	16	5		92	- 98 le 94	94
ĭt.	riazo							[eO	;	iylben)2	2)2	$\mathbf{I_2}_2$	IAc):	2)2	nolyl- riazol	tho-
Subs	enzot	e	e	õ	L	02	ć	-5-N	į	Phen	ະດໍ	(NO2	10° -(NC	IN)-	IN)-	ON)-	-Quin	Napł
	В	Non	5-M	5-M	5-7 D U U	<u>2</u> -N	4-N	I-Ao		-i uoN	2 2 2	5,7-	2'-N 2'4'	2′,4	2,4	4′,5	1-2′. be	2,3-
ing		_				X	849		0	860 851	339	220 220		34 6			the	
bend		ΟN)				05 19 05	32 13		,	201 201 201 201	10	201 201 201	=	25 13	01		ц Ц	
H		2				15	12		1	12.1	150	12,12	15	15	15		s an	
and 1		v(ring)	0			1548	$1501 \\ 1500$		1509			1495	1525 1503		1506		in thi	
ching		⊮(NH) hend)	1	, ,	1526 1564	1564	0001						$1580 \\ 1537$				italics	
stret	les.	Z		000 594	101 195	263	01 888 01		100	00		88 90	10b	262	95	321	n ii	
NO ₂	iazo	N,		21	16	151	120		E F	197		201	16	1	1	16	give	b
and]	1,2,3-t1	"(C=C)		1623	1635	1630 1623 1623	1642 1618		1673	1616 1619		1610	$\begin{array}{c} 1640 \\ 1607 \end{array}$	1619	1618	1636	na are	
N=N	ncies]	ncres] v(CO)	1001				1744						1693	1662			maxi	and.
ပို	reque	(CH)	(11)			20			3100	3100 3040		3050 3090		3090	2920 3140	3050	2880 ensity	oad b
С,	4	م ب		50b		3025							400 00b				v int	E E
ĊH,		(NH		200b	200b 200b	750b 150b	200b	zoles					-32			370b	f lov	, a
H,		₽ţ	s S	3150	ოო	40 2	,	otria					3450 3450			ი ი -	ies o	bles.
Z			ole			34		enz					_	4	÷	zole tri	enc	Ta
<u> </u>			az				0	91				-	~~~~		, L	, e d	n	00
CE I.]		uhst	rzotriaz		0		2 5-MeO	henylb	•	(10°),	a à). (NO.).	(NH ₂) ₂	NO.).	vlouind	izotria: aphthc	le Frequ	owing
	NH, CH, CO, C=C, N=N, and NO ₂ stretching and NH bending Subst. 1 2 3 4 5 6 7 8 9 10 11 12 13	NH, CH, CO, C=C, N=N, and NO ₂ stretching and NH bending Subst. 1 2 3 4 5 6 7 8 9 10 11 12 13 frequencies 1,2,3-triazoles. Benzotriazoles	NH, CH, CO, C=C, N=N, and NO ₂ stretching and NH bending Subst. 1 2 3 4 5 6 7 8 9 10 11 12 13 frequencies 1,2,3-triazoles. ν (NH ν (CH) ν (CO) ν (CO) ν (CO) ν (CO) ν (CO) ν (N=N) hend) ν (NO) ν (NO)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 2.	'ibrationa	i jreq	uencies	of the	e ring -	system	s in 1	,2,3-tr	iazole	derivai	tives.	
Subst.		-		Ben	zotriazo	oles						
None	1464	$1427 \\ 1390$	1 3 15		1273	1217	1150	1120	1096	1073	1029	1012
5-Me	$\begin{array}{c} 1468\\ 1442 \end{array}$	1398 1384 1364	1301	1282	1264	1210	1160	$\begin{array}{c} 1142\\ 1136 \end{array}$	1085	1046	1018	1004 990
5-MeO	1460	1431	1305		1270	1218	1170	1121	1100	1030	1021	1001
5-C1	1464	1423	1296	1282	1262	1210	1159	1135	1111	1061	1012	1005
5-Br	1468	$1425 \\ 1412$	1288	1278	1261	1212	1144	1133	1104	1051	1021	993
$5-NO_2$	$1481 \\ 1458$	1410	1301	1271	1244	1210	1141			1076	1007	989
4-NO ₂	1448	$\begin{array}{c} 1412 \\ 1390 \end{array}$	1285		1249	1209	1152			$\begin{array}{c} 1078 \\ 1062 \end{array}$	1026	982
1-Ac-5-MeO	1444	$\begin{array}{c} 1428 \\ 1390 \end{array}$	$\begin{array}{c} 1311\\ 1291 \end{array}$	1270	$\begin{array}{c} 1262 \\ 1255 \end{array}$	1212	1163	$\begin{array}{c}1131\\1123\end{array}$	1090	1065	1028	958
				1-Ph	envlben	zotriaz	oles					
None	$1468 \\ 1456$	1392	1299	1285	1251	1195	1151	1132	1098	1066	1019	949
$5-NO_2$	1482	1442	1284			1191	1178	1139	1090	1076	1010	1002
5,7-(NO ₂) ₂	1405	1402	1305			1209	1161		1088	$\frac{1052}{1058}$	1003	<i>982</i>
$2'-NO_2$	1453		1306	1282	1250	1205	1151	1128		1060	1009	970
2',4'-(NO ₂) ₂	1459	1398	1298	1271	1245	1191 1195	1161	1141	1086	1039		985
2',4'-(NH ₂) ₂	1470	<i>1401</i> 1350	1 33 0	1282	$1252 \\ 1230$	1192	1148	1128 1138 1125	1087	1010		966
2',4'-(NHAc) ₂	1460	1425 1398 1374	1317	1281	1269	1200 1183	1142	$1120 \\ 1125$	1093	1030	1013	990
4',5-(NO ₂) ₂	1477	1446	1318	1298	1232	$1206 \\ 1193$	$\frac{1182}{1142}$	1123	1113	1075	1035	1000
1-2'-Quinolylbenz triazole	o- 1488 1479	1450 1437 1400 1388	1324 1310 1295	1289	<i>1243</i> 1214	1197	$\frac{1185}{1144}$	1133 <i>1117</i>	1088	1030	1015	1005 <i>990</i>
2,3-Naphthotriazo	ole 1460	1430 1375 1352		1285	1223		1163		1112	1060	1010	985

The first two frequency columns contain some CH₃ bending frequencies.

cm.⁻¹ (Table 1), absent from other spectra, which is probably an NH deformation frequency.¹⁰ An NO₂ stretching frequency may sometimes obscure this absorption. Strong bands, arising from the antisymmetric and symmetric NH₂ stretching vibrations,¹¹ are present between 1550 and 1500 cm.⁻¹ and between 1360 and 1339 cm.⁻¹, respectively, for the nitro-compounds (Table 1). Whereas all dinitro-compounds show two welldefined and very strong antisymmetric NO₂ stretching frequencies, only 5,7-dinitro-1phenylbenzotriazole showed two low frequencies.

Vibrations of the Ring Systems above 1000 cm.⁻¹.—Pairs of characteristic bands near 1100 and 1000 cm.⁻¹ and near 1050 and 1000 cm.⁻¹ have been reported for the triazole¹² and tetrazole¹³ rings respectively. Strong bands are usually found near these three frequencies with the present compounds. Occasional bands near 1440 cm.⁻¹ arise from deformations in methyl groups,¹⁴ but most of the frequencies listed in Table 2 are due to vibrations of the rings and detailed assignments are not possible. The pattern of

¹⁰ Jones and Sandorfy, "Chemical Applications of Spectroscopy," ed. W. West, Interscience, New York, 1956, p. 520.
 ¹¹ Randle and Whiffen, J., 1952, 4153.
 ¹² Hartzel and Benson, J. Amer. Chem. Soc., 1954, 76, 667.
 ¹³ Lieber, Levering, and Patterson, Analyt. Chem., 1951, 23, 1594.
 ¹⁴ Fiber, 1949, 23, 1399; Murti and Seshadri, Pi

¹⁴ Batuev, Zhur. fiz. Khim., 1949, 23, 1399; Murti and Seshadri, Proc. Indian Acad. Sci., 1938, 8, A, 519.

frequencies is well maintained among the compounds, and the introduction of an additional benzene ring does not produce striking differences. Even 1-2'-quinolylbenzotriazole and 2,3-naphthotriazole preserve most of the spectral features of the simpler compounds. In the region covered by Table 2, bands related to the ring system appear near 1460, 1400, 1310, 1280, 1250, 1210, 1160, 1120, 1100, 1060, 1020, and 990 cm.⁻¹. These conform with the pattern of bands occurring in other compounds possessing fused benzene and 5-membered rings.¹

Bands below 1000 cm.⁻¹.—Frequencies in column 2 of Table 3 are present only in compounds possessing methyl or methoxy-groups, and some of these bands could be C-Me and C-O-Me stretching frequencies.¹⁵ Nitro-compounds possess bands shown in column 5, some of which might be due to C-NO₂ stretching modes.¹¹ Many of the remaining bands are out-of-plane CH deformation frequencies. Marked variations occur in the distribution of these frequencies; e.g., compare data for benzotriazoles with those for their 1-phenyl derivatives. It is likely that the number and distribution of the frequencies are related to the pattern of substitution.¹⁶

Out-of-plane CH deformation modes of simple di- and tri-substituted benzenes give rise to strong bands near 850, 810, and 775 cm.-1, derived respectively from motions involving an isolated ring-hydrogen atom, two adjacent ring-hydrogen atoms, and three adjacent ring-hydrogen atoms situated between two substituents.¹⁷ Thus symmetrically trisubstituted benzenes possess the band near 850 cm.⁻¹, para-disubstituted benzenes possess the bands near 810 cm⁻¹, and *meta*-disubstituted benzenes exhibit the bands near 850 and 775 cm.⁻¹. In sets of 1,3- and 1,3,5-substituted benzenes the frequency, that arises from motions of a single ring-hydrogen, between 930 and 830 cm.⁻¹ is a linear function of the sum of the Hammett meta σ values ¹⁸ of the substituents.¹⁹ Halogen ubstituents appear to be exceptional and behave, in this context, as if they possessed σ_m values of zero. The 1,3-substituted compounds also possess a band between 830 and 765

Rev., 1953, **53**, 191. ¹⁹ Bellamy, *J.*, 1955, 2818.

¹⁵ Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, New York,

 ^{1945,} p. 353; Sheppard and Simpson, *Quart. Rev.*, 1953, 7, 19.
 1946, p. 353; Sheppard and Simpson, *Quart. Rev.*, 1953, 7, 19.
 1950, 46, 103; Cannon and Sutherland, Spectrochim. Acta, 1951, 4, 373; McMurry and Thornton, *Spectrochim. Acta*, 1951, 4, 374; McMurry and Thornton, *Spectrochim. Acta*, 1951, 4, 375; McMurry and Thornton, *Spectrochim. Acta* Jost, 1907, 20, 100, Callida and Succaulay, Lien, and Launer, J. Amer. Chem. Soc., 1954, 76, 2354;
 O'Sullivan and Sadler, J. Org. Chem., 1957, 22, 283.
 ¹⁷ Colthup, J. Opt. Soc. Amer., 1950, 40, 397.
 ¹⁸ Hammett, "Physical Organic Chemistry," McGraw-Hill, New York, 1940, p. 188; Jaffé, Chem.

cm.⁻¹ arising from vibrations of three adjacent CH groups. These frequencies are also related to the sum of the σ_m values, halogen again being exceptional. For 1,4-substituted compounds,¹⁹ a frequency between 875 and 795 cm.⁻¹ is linearly related to the sum of the Hammett *para* σ values in those cases in which at least one substituent formed a conjugation with the ring. The three straight lines are parallel.

Benzotriazoles, substituted at position 5, possess one isolated ring-hydrogen atom at position 4 and two adjacent ring-hydrogen atoms at positions 6 and 7. Excluding the 1-phenyl compounds, because of the CH vibrations of the phenyl group, the 5-substituted compounds possess a pair of bands between 890 and 800 cm.⁻¹ (Table 3) which are intense in the 5-methyl compounds (further strong absorption near 800 cm. $^{-1}$ might augment the intensities in this case), but otherwise are of moderate intensity. The higher set of frequencies v_1 could be out-of-plane vibrations of hydrogen atoms at position 4 and the lower set v_2 could arise from vibrations of the two adjacent hydrogen atoms. The Figure shows the relation between these sets of frequencies and the σ_m values of the 5-substituents. Regression lines for the frequencies are $v_1 = 817 \cdot 1 + 109 \cdot 0\sigma_m$ and $v_2 = 806 \cdot 3 + 109 \cdot 1\sigma_m$. Correlation coefficients are 0.990 and 0.989 respectively. Halogen substituents do not behave exceptionally. Other frequencies in the neighbourhood (Table 3) are not linearly related to either the Hammett σ_m values or the Taft σ_I values ²⁰ of substituents. As correlation of v_1 and v_2 with σ_I values is poor, some resonance contribution supplements the inductive effect of substituents on the CH vibrations. The approximate proportion of this resonanc econtribution follows from the relation $\sigma_m = \sigma_I + \sigma_R/3.^{21}$ Tabulation of lower frequencies is greatly assisted by the existence of this correlation.

The author thanks the Department of Scientific and Industrial Research for a special research grant which helped to defray the cost of this research.

COURTAULD INSTITUTE OF BIOCHEMISTRY, MIDDLESEX HOSPITAL MEDICAL SCHOOL, LONDON, W.1. [Received, March 23rd, 1960.]

²⁰ Taft, "Steric Effects in Organic Chemistry," ed. M. S. Newman, John Wiley and Sons, New York, 1956.
²¹ Ref. 20, p. 594.